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APOSR-TR. 8 3 -0 386 -

Characterizing Dominates on a Family of Triangular Norms

By Howard Sherwood

*' A t-norm is a function defined from-U to I = [0,1] which is commutative,

associative, nondecreasing in each place, having zero as a null element and one

as an identity. A t-norm R dominates a t-norm T (and we write R>>T) if, for

each a,b,c,d in I,

R(T(a,b),T(c,d)) T(R(a,c),R(b,d)).

While our interest in the dominates relation on t-norms arose in the study of

". products of fuzzy subgroups [4], R. Tardiff first introduced dominates to the

literature [51 as a relation on triangle functions to study products of probabilistic

metric spaces. In his paper he shows how the familiar Minkowski inequality merely

states that addition dominates the mapping f from R+ X R+ into R+ given by

f(a,b) = (ap + bP)I1 p for p 1.

To get another view of the connections between dominates and the Minkowski

inequality we introduce notation suggested by a colleague, M. Taylor. If

a = (al. a2 ) we write Tia for T(al,a2) if a = (al,a2a3) we again write T.a.

for T(T(al,a2 ),a3 ), and the obvious extension defines T a when a = (al,a2 ... ,an).

It is easy to prove that R>> T if and only if, for all aij in I with i =1,2...,m

and j = 1,2,...,n,

R Ta T Ra
Rjiaij iaij

* Research sponsored by the Air Force Office of Scientific Research, Air Force
Systems Command, USAF, under Grant Number AFOSR-81-0124. The United States
Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.
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This form of the dominates relation bears a striking resemblance to the very

elegant symmetrical form of Minkowski's inequality attributed to A. E. Ingham

by G. H. Hardy, J. E. Littlewood and G. Polya [2;p3l].

In [3] B. Schweizer and A. Sklar pose two problems we attack in this paper:

* (1) Is dominates transitive on the collection of all t-norms? (2) Given a

specific t-norm such as TT, defined by TT(a,b) = a-b, find all t-norms that

dominate TT or are dominated by Tr. While we do not address these problems in

all their generality in this paper, we do completely resolve them as they pertain

to a particular family. {T } of t-norms defined by Schweizer and Sklar [3].
p

For any real number p 0, let gp and f be defined by

_ l-x p

g (x) = P

for each x in I, and Accession For

'NTIS GRA&I

if ].-px -< O, DTIC TAB 0
f (x) = Unannounced 0

P (l-px) , if l-px > O. Justificatio

For any p 0 0, the t-norm T defined by ,-n
p Distribution/

Avilability Codes
T (a,b) f (g (a) + g (b)) ....... o

p p pi and/or
Dizt Special

can also be given by

T (a,b) {Max(ap + b -,)}p•

The remaining three members of the family {T } are given by
4. p

* To(a,b) limp Tp(a,b) =-(a,b),

, .. *,.-- : tF C

0- i -1
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T__(a,b) = lrn T (a,b) = M(ab), and

~p _ p
T (a,b) = lrn T (a,b) = Z(ab).

K,':. To resolve the above-mentioned problems as they pertain to the family {Tp},
p

we shall show that

(1) T T if and only if q 5 p
q p

The terminology used throughout this paper is standard in probabilistic metric

*spaces. All the necessary definitions as well as the results listed in the following

*: theorem are given in [3].

THEOREM 1. For any t-norms T and R, (i) M>>T, (ii) T>>T, (iii) T>>Z, and

(iv) if R>>T, then R k T, i.e., R(a,b) > T(a,b) for all a,b El.

Theorem 1 (iv) says there is no hope of proving q <_ p implies T qT if we
q p

cannot prove q < p implies Tq T Since the latter result is helpful in

proving the former, we prove it first.

THEOREM 2. T z T if and only if q p.

q p

PROOF. Suppose p and q are nonzero real numbers with q < p. Since

(f ,g ) and (f ,q ) additively generate T and T , respectively, we can use
P p q q p q

Lemma 5.5.8 of [3] to conclude that T > T if and only if gpof is subadditive
q- p q

* and that T = T if and only if gpof is linear. Now4.P q pq

/p, if 1 - qx < 0,
'"~gp fq Wx =

""gO x l-(l-qx)P/q]/p, if 1 - qx > 0.

Notice that gpof is defined on [0,-) and gpof q(0) = 0.pqpq

4"
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Moreover,

0, if l-qx 0,

(g f )"(x) =
q(q-p)(l-qx) (p-2q) q , if -qx > 0.

From this it follows that %Of is concave. Lemma 2.2.6 of [3] now yieldsgpofq

that gpof is subadditive so that T > T . Furthermore, since gpof isp.q q - p q

nonlinear, T # T
q p

Now, if 0 < p, then for any qql with 0 < q < ql < p, and for any x,y, in I,

T (x,y) < T (x,y) < T (X,y).
q q-

* Consequently,

T0 (x,y) = lim T (x,y) < T (X,y).
0 q- q q

But then < Tq T and, since Tq T p, we also have T # Tp. A similar

argument shows that whenever q < 0, Tq T 0 with T q TO

Finally, for any real number q, parts (i), (iii) and (iv) of Theorem 1

yield T > T > T Also, it is easy to verify that T #T T by
-~ q -w q

1/qshowing that, for a = (2/3)I / q ,

T_ (a,a) > T (a,a) > T.(a,a).-" q

Turning to the reverse implication, we suppose T > T . If p were less
1- P

than q, then we would have T a T whence T = T , a contradiction to what was
p q q P

4.
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proved above. Thus T q T implies q < p, and the proof is complete.

The next theorem is an immediate consequence of Theorem 2 and part (iv)

of Theorem 1.

THEOREM 3. If T >>T then q < p.q P

To prove the reverse implication we must be able to show that whenever

q <p,

(2) T (T (a,b),T (c,d)) T> T(T (a,c),T (b,d))
qp p p q q

for all a,b,c,d in I. Because the definitions of T and T are essentially two-P q
part rules, it is convenient to consider as special cases those values of a,b,c

and d which make T and T zero. Motivated by this we prove the following.
p q

LEMMA 1. Suppose R and T are t-norms. Let a,b,c,d be in I. If any of

T(a,b), T(c,d), R(a,c), R(b,d) is zero, then

(3) R(T(ab),T(c,d)) > T(R(a,c),R(b,d)).

PROOF. If either R(a,c) or R(b,d) is zero, then (3) is satisfied because

its right side is zero. Now suppose T(a,b) is zero. Then

R(T(a,b),T(c,d)) = R(O,T(c,d)) = 0

= T(a,b) > T(R(a,c),R(b,d)).

Similarly (3) is satisfied when T(c,d) = 0.

When q is positive the left side of (2) could be zero even though neither

T (a,b) nor T (c,d) is zero. In this event we must be able to show the right
P p

a-



side is also zero. The following lemma, whose proof is in the appendix, will

help us do that.

LEMM4A 2. Suppose r > 1 and let

{(1~2 ~ 3 ~QE 4  r+ r 1 r r 1

X1+ x 3  1and x2+ x 4  1

Define F and G on U via

F(x1 ,x 2 9 x3 X 4) =(x 1  X 3- + (X2 + x 4 r

and

G(x1,x2,x3,x) (x r + x - 1/r + (xr + xr l)1/r -1.

Then, F(x1 ,x 2,X 3 x 4) 1 at each (x1,X 2 x 3 x 4 in U at which G(x1 ,x 2 x 3 x 4) 0.
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LEMAMA 3. Suppose q < p with p,q #0. Suppose T q(T p(a,b), T p(c,d)) equals

zero. Then T (T (ac), T (bd)) also equals zero and consequently (2) is
p q q

satisfied.

PROOF. First consider the case q < 0. Since

0 < T (a,b)T (c,d) T T(T (a,b),T (c,d))
-p p0 p

ST C T p(a,b),T p(c,d)) =0

we must have T (a,b) =0 or T (c,d) =0. By Lemma 1 (2) is satisfied whence
p p

T (T (a,c),T (b,d)) must be zero.
p q q

Now suppose q > 0. If any of T (a,b), T (c,d), T (a,c), T (b,d) were zero, then
p p q q

the result would again follow from Lemma 1. Thus we assume ap + bp> 1,

*CP + dp > 1, aq+ cq> 1 and bq+ d q 1. Since T CT (a,b), T (c,d)) =0,
q p p

pa b 1 )q/fp + (c d 1 )q/p -1 < 0.

There exist a, bit C. and d1 such that a < a1, 1, b- b 1 ,c<l

d < d1  1, and

1 1 +( 1  1

*Moreover, a + bp ,c ~ + dp> 1,a1adb+d 1 Let xi l1 1 >l 1  1 '1 1 1 1

x and r =p/q. Notice t1hat r > 1, r , r >1
2 i' ~3 1x4 1 1 2

r r
x + 1, > 1, x > x + x >lIand that
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Thus, Lemma 2 implies

(x + x 3 -r+ (x + x 4  1)r<l1,

(a~ q c - 1)p/q + (b q + d - 1)plq -1< 0.11 1 1

*Since t-norms are nondecreasing in each place, the preceding inequality yields

T p(T q (a,c), T q(b,d)) T TP(T q(a1 ,c 1) T q(b d 1)) =0

and the proof is complete.

The next lemma shows that for nonzero p and q ,T q >T pprovided (T q)P

satisfies a condition which resembles the 2-increasing condition of [3].

LEMMA 4. Let p and q be nonzero real numbers and let a,b,c,d in I

be such that T p(a,b), T p(c,d), T q(ac), T q(b,d) and T (T (ab), T (c,d)) are all

* positive. If p is positive and

* (4) [T (T (a,b),T (c,d))]p + [T (1,1)]p > [T (a,c)]p + [T (b~d)]p
q p p q q q

or i p is negative and

(5) [T (T (a,b),T (c,d))Ip + [T (1,1 )19 < [T (a,c)]p + [T (b,d)]P,
q p p q q q

* then

(6) T q(T p(a,b), T p(c,d)) z T C T (a ) T q(b,d))
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PROOF. Suppose p > 0 and (4) holds. Then

(7) [T q(T p(a,b), T (c,d))] p > T (a,c)]P + T (b,d)]p - 1.

- q, p - q q

If the right side of (7) is less than or equal to zero, then (6) is obviously

* satisfied because its right side is zero. On the other hand, if the right side

of (7) is positive, then

T (T (a,b), T (c,d)) {[T (a,c)]p + FT (b,d)]p -}
q p p q q

= T (T (a,c), T (b,d))
pq q

so that (6) is again satisfied.

Now suppose p < 0 and (5) holds. Then

FT q(T p(a,b), Tp (c,d)) p - [ q (a,c)] p + T q(b,d)] p - I

But p < 0 and the both sides of the preceding inequality are positive. Therefore,

we can raise both sides to the power i/p and, when we reverse the sense of the

inequality, the result is (6).

The importance of Lemma 4 lies in the geometric view it gives the problem

of verifying (6). Notice that the right sides of (4) and (5) are the sum of the

values of (T q)p at two points (a,c) and (b,d) of the unit square and that the

left sides of (4) and (5) are the sum of the values of (T q)p at two other points

of the unit square. When (a,c) and (b,d) are given, it is an easy matter to

. locate the other two points. Of course (1,1) is trivial to find. To locate the

remaining point, (T p(a,b), Tp (c,d)), we first locate (a,b) and (c,d) as indicated

in Figure 1. Next we proceed along the level curves of T from (a,b) and (c,d)

to (T (a,b), 1) and (1,T (c,d)), respectively. The desired point is vertical to
p p

(T (a,b), 1) and horizontal to (1, T (c,d)).[ P P
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(T (a,b),l)p (a, b)

(b , b)

c,C
(a, c)
Start

(b, d)
(c~d)Start

FIGURE1

lFinishl

( (T I '~(1, T 1~ )
(T p(a,b),T p(c,d))

p- p /

((x PxP+1)llp,(xP-xP+l)lIP)

0 0

SatatFns

P-p 11 p p 1P

(x0x+) ( 1



It is helpful to reverse the process as indicated in Figure 2. Start at
12

any point (xo,yo) E such that Tq (xo,yo ) > 0, and at any point (x,y) in

S[X,1 X ry ,1] then proceed to ((xp - xp + 1)/p,(yp - yP + 1)11p ) as directed by

the arrows. From our new point of view we now need to compare

(8) IT (x P+ T ]P

with

(9) FTq (x,y)]p + [T ((xp - xP + 1) / p  P - yP + 1IIP)]pqq o 0 Y

Notice that (8) is merely the value of (9) when (x,y) is replaced by (xYo).

"" These observations motivate the following lemma.

2
LEMMA 5. Suppose p,q # 0. For each (: y1 0 E I such that T q(x ,y)0 > 0

and for each (x,y) in Fx ,] X FY I ], let
0

G (xy) = FTq(x,y)] p + [T (xp - x9 + 1)1/P,(Yp - .
(xoy) q q o 0

Then,

(i) Each G is a function defined on [x ,1] X [Yol], and

(ii) If p is positive and each G (xYo) assumes its maximum value at the

lower left corner of [xo l] X [yl] or, if p is negative and each

G assumes its minimum value at the lower left coiner ofG(xo,Y o)

.x 014] X [Yl], then, for any a,b,c,d such that T p(a,b), Tp (c,d),

STq (a,c), T q(b,d) and T q(T p(a,b), Tp (c,d)) are all positive.

(10) T q(T p(a,b), Tp (c,d)) Tp (T q(a,c), T q(b,d)).

qppp

Ih-
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PROOF of MI. Let (x,y) E rxol] X [y09l]. It is easy to verify that

((xv -p + 1)1/P, (yp - yp + 1 )1/p) is also in [x , 1 X FY01' Since

T q(X ,y ) 0, and T qis nondecreasing in each place, it is immediate that

G (x is a function defined on [x91] X [yO9l].
otyo

PROOF of (ii). Suppose first that p is positive and each G (oy assumes

* its maximum value at the lower left corner of Ex 11X x[y,'1* Let a,b,c,d be

in I such that T (a,b), T (c,d), T q(a,c), T q(b,d) and T q(T (a,b), T (c,d)) are
p p q p p

*all positive. Choose x =T (a,b) and yo = T (c,d). Since T (a,b) !5 a -. 1
0 p p p

and T (c,d) :5 c :5 1 we have (a,c) e fx1l X [y0,ll. Thus

G CO (xy) G )Xgy(a~c).

But

G (oyo (xqy) [ T q(T (a,b), T (c,d))]1'+ [Tcq l,l) p

and, since x~=ap+bp -1I and yp = cp + dp - 1,hG G(x~y)(a~c) [T q(a,c)]p + [T q(b,d)Jp

we conclude from Lemma 4 that (1.0) holds.

The proof for p negative is so much like the proof for p positive, we

shall omit it.
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The preceding lemma reduces the problem of showing T >> T for nonzeroq p

p and q to infinitely many extreme value prG -* ms on closed rectangles of the form

[Xo,l] X [yl]. We shall show later that each G (xy) has its only critical

point interior to [X,l] X [yol] at ([(xp + 1)/21 I/P' [Yp + i/2]l/p) and we

00 0

shall need to compare the value of G(x Yo) at this point with G x  ) (xoy).

The following lemma will help make that comparison.

LEMMA 6. Suppose p and q are nonzero real numbers with q < p. For each

x in I, let
p + i)/p

a(x) x +1

2

Then, for all x,y in I,

(11) aT (x,y) >-T (a(x), a(y))q q

PROOF. Using standard calculus techniques it is easily verified that a

is an increasing function from I onto [a(O),1]. Notice that if p < 0, then

-l1
a(O) =0 while if p > 0, c(O) = 2 /p  Define a from I into I via

if 0 x <a(O),

(2p - if a (0) < x 1.

* For each x in I,

C (x) = x
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while

ao 8(x) x.

Therefore, (11) is satisfied if and only if

(12) T q(x,y) :T q(a(x),a(y)).

The pair (f,gq) of additive generators for T are quasi-inverses of each
q, q q

other and 8 is a quasi-inverse of a. Moreover, the domain of a is a subset of

the range of f . Thus, Lemma 2.1.4 of [3] guarantees that gq o0a is a quasi-

inverse of B o f It is now easy to verify the hypotheses of Theorem 5.5.2 of
q

[3]; therefore we conclude that the pair (a o fq, g oa) additively generates a

continuous Archimedean t-norm T. Moreover, (12) is satisfied if and only if

T (x,y) 8 of (g oa (x) + g o a (y)) = T(x,y).

q q q q

According to Lemma 5.5.8 of F3], this last inequality will hold if and only if

g oa of is subadditive. This will follow from Lemma 2.2.6 of [3] if we can
q q

show that g oa of q(0) = 0 and that gqO o f is concave. Now
q q q q

g qoa of (0) = gqo a (1) = gq (1) = 0 and it is easy to show that (gqoa of )" (x)q qqq q

- is negative if 1 - q x 0 and zero if 1 - q x < 0. From that it follows

. that g oa of is concave, completing the proof.
q q

As indicated immediately above the statement of Lemma 6, we need to compare

the value of G at its only critical point inside [xol] X [Yo,1] with

G (xyo
S(xY) (x y). The next lemma does that. In order to simplify the notation

-T we shall drop the subscript from Gx .

4o

(4

0
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LEMMA 7. Suppose p and q are nonzero real numbers with q <p. Let

*(XOP , E I2 such that T (Xy) >0. For each (x,y) in [xl1 )( [y 1], let

(13)G(x,y) =ET (X,Y)]p + FT (xp xp' + 1) ,(yP y~ +
q qo 0 0

* If p > 0, then

\P+ I/p yp +l
2~oy / 9( 2 J

* while if p < 0 the inequality is reversed.

rROOF. According to Lemma 6,

aT (xy) T (cix ),c(y )q 0 q o 0

from which it follows that

f [T x ,y )JP + 1 / P + 1 pl p2 q('X~~ 2 ( 2+~l

If p > 0, this yields

(14) [Tq (x y )1p + 1 t 2___ T_0__+

while if p '0 the inequality is reversed. Now the left side of (14)is
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precisely G(xyo ) and the right side is G 02 l j2 This

proves the lemma.

LEMMA 8. Suppose p and q are nonzero real numbers with q < p. Let

(Xoyo) be in 12 such that T (xoy o ) > 0. For each (x,y) in IXo,l3 X [yo01]

let G(x,y) be given by (13). Then for all (x,y) in [x0,l] X [yl], if p

is positive,

(15) G(xoy) G(x,y)

while if p > 0 the inequality is reversed.

The proof of Lemma 8 is lengthy so it is also placed in the appendix.

THEOREM 4. Suppose p and q are nonzero real numbers with q < p then

T >>T
q p

PROOF. Let a, b, c and d be in I. We need to show that

(16) T (T (a,b), T (c,d)) T (T (a,c), T (b,d)).
qp p p q q
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If any of T (ab), T (c,d), T q(a,c), T (b,d) or T (T p(a,b), Tp (c,d)) is zero
ppqq qp

then Lemma 1 or Lemma 3 would yield (16). But if each of those quantities is

positive, then Lemma 5 (ii) and Lemma 8 yield (16) and the proof is complete.

Parts (i), (ii) and (iii) of Theorem 1 yield

(17) q ! p implies T >>T
q P

when q = or q =p or p . Theorem 4 gives (17) when p and q are

ordinary nonzero real numbers. Thus the only two cases remaining are q < 0 = p

and q = 0 < p. Because of the definition of T0 and the continuity of each

member of the family. {T 1, both of these cases follow immediately from Theorem 4
p

by taking limits. Thus we have the following theorem.

THEOREM 5. If q p then T >> Tq P

Combining Theorems 3 and 5 we obtain

THEOREM 6. T >> T if and only if q 5 p.
q p

As a corollary to Theorem 6 we have

COROLLARY. The dominates relation is transitive on the family {T p

The author expresses his appreciation to M. D. Taylor for patiently forcing

the author to justify each detail and also to B. Schweizer for improving the paper

and shortening the proof of Lemma 2.

I. " Iu, *" , -" -- . . .
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APPENDIX

PROOF OF LEMMIA 2: We shall make use of the theorem on Lagrange multipliers

* given in [1; p. 381]. Functions F and G are of class C' on the open set int(U)

4
in R . Let X 0be that subset of int(U) on which G vanishes. Assume that

xo = (a,b,c,d) E X0 and assume there is a 4-ball B(x )such that F(x) :5 F(V)

*for all x in X 0n B(x 0) Notice also that G() 0. Thus there is a number X

* such that

F (x + X G ( 0

for i =1,2,3,4. Thus,

(18) r (a+c-l) r-l + Xar-1 (a r + b r _ 1 ) (1-r)Ir = 0

(19) r(b+d-l) rl+ Xbr (ar + br - 1) (r)r= 0

(20) r(a+c-1) r-l + Acr-l (c r + d r - 1 ) (1-r)/r =0

and

(21) r(b+d-l)r- + Xdr (cr + dr )lr/ 0.

Moreover, since isixX=0 Thus,

(2) (r +r _1)l/r + (cr +r 1)1/r 1

Combining (18) and (20), (19) and (21), and (18) and (19) we obtain, respectively

* (23) ar (ar + br 1 )( / - - (cr + dr

(24) b rl (a r + b r - 1 )(1-r)/r d drl (cr + dr ~1 (l-r)/r

and

r-l r-l r-l r-l
(25) (a +c-1) /a =(b +d-1) /b
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*2 From (23) and (24) we get
[ic d

(26) a

while from (25) we get

c -1 d -1Sa b

which, in light of (26), yields

(27) a =b and c =d.

Using (27) in (23) we obtain

r-i _ (1-r)/r r-i r -r)/r

(28) a (2ar  1) c (2c 1)

Raising both sides of (28) to the power r/(l-r) and then performing the indicated

multiplications, we get
2 a-r 2 C-r

2 -ar = 2 -c ;

whence

(29) a c

*. Finally, (22), (27) and (29) yield

a b = c = d = ((l + 2 r)/2
r + l)I/r

I-

!I
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Next we find the value of F at E= (a,bc,d) to be

F(X) (+ 2r)/r - 21/ r

To show that this number is less than 1, it suffices to define

f(x) = (I + xr) 
/ r

for each x e[1,2] and observe by the mean value theorem that, for some

with I < & < 2,
• [ ]r-1

(1 + 2r-/r_ =/r f(2) - f(l) - f'( )(2 -1) l(l+r)i/r < 1.

*Thus, if F has a relative maximum at some point of X0, the value there is

less than 1.

44

~Since U is a closed subset of R4 and G is continuous on U, the set V of

points of U at which G vanishes must also be closed in R Moreover, since V

is also bounded and F is continuous on V, F must attain a maximum value on V.

Either it attains that maximum at an interior point of U or else on the boundary

of U. We have already shown the maximum value is less than 1 if it is attained

at an interior point of U. So now we shall see what happens on the boundary

* of U.

*9 r r 2=i nta ae
First we consider that boundary where xr + x r 1. In that case,

T(x l,x2) - 0 so that by Lemma 1,

T(T Cxp ( (Txx

1 r x ,x2 ),Tr(x 3,x4)) Tr(Tl(x,X 3 ),Tl(x2,x4 ))

whence

F(xlx 2,X3 ,X4 ) = (xI + x3 - i4r + (x + x - i)r -1 + 1

<[T r(Tl(Xl,X 3 ),TI(X 2 ,X4 )]r + 1 = 1

I-
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r r
Likewise on the boundary where x3 + x4 = 1, F(x1 ,X2,x31x 4) 9 1.

Next consider the boundary where xI + x3 = or x2 + x4 =1. It is

immediate in either of these cases that F(xl, x2 xx4 ) c 1.

On the boundary where xI =0, if (x 3x,2,x3,x4) is in U then x2 = =x

so that

F(xl,x 2,x3,x4) < .
2P 9 4 4-

Similarly on the boundaries where any of x2, x3 or x4 =0 we must have

F(xlx 2,x3,x4) < 1.

Now consider the boundary where xI = 1. We desire to show that

(30) F(xlX 2,X3,x4) x + (x2 +x 4 -1) < 1

at all those points (x1,X2,X3,X4) = (l,x2 ,x3 ,x4 ) for which

r +r - i/r

(31) G(xlX 2,X3,x4) = x2 + (x3 + x4 r 1) - 1 = 0.

r
Solving(31) for x3 , substituting the result into (30) and rewriting the new

*" equation, we conclude that we need only show

[x -1- r r -(- r
[x4  I c2)] < x4  x2)

Since x < 1 and x2 + x4 - 1 > 0 we have 0 1 x2 < x4  Thus,letting

1- x2 = tx4 we see it suffices to show

r r
(1- t) < - t

for 0 < t < 1. It is easy to verify this. Therefore(30) is satisfied at all

Il
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points on the boundary of U for which x= 1 and G(xlX 2,X3,X4) = 0. Because

of the symmetry in the variables, the same situation prevails at any boundary

point of U at which any of x2, x3 or x4 equals 1. This completes the proof.

PROOF OF LEMMA 8: Suppose p > 0. First we establish (15) on the boundary of the

* rectangle Fxo,l] X [Yo,l]. Consider that portion of the boundary where y = yo.

For each x in [x,l], let

kq - 1)p/q + (x p 
- p + ).k(x) 0G(x,y 0 (x + Y o

*- Notice that

k(x) =G(xoY)
0 0 0

while an application of Theorem 2 yields
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k(l) yp +p < [T (x y]+o 0 p 0

S[T q(x ,Y o)]P + 1 = G(xgy.).

Now, for x < x < 1, k'(x) = 0 if and only if y = 1. But, if y 0 1, then

k(x) xp' + 1I xp + yp < G(x ,ly)o o 0 0

This shows that (15) is satisfied on the boundary where y y.

0

in(x) G(x,l) =p 2'+ (x - XP+ 1)q/p +q -]/

0 0

Notice that

M(x)=xp + y < G(x~y
0 0 0 00yo

while

m(l) =1 + [x+ y9 _- 1 ]p/q -1 +[T (x ,y )]P G(x ,y )0 0 q 00 0 0

*Also, for x0 < x < 1, m'(x) =0 if and only if yo 1. If Y = 1, then

0p

m(x) xp + 1 = 2 + yP < G(x
0 0 0 00
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Thus (15) is satisfied on the boundary where y - 1.

Because of the symmetry in x and y we can assert that (15) is also

satisfied on the other two boundaries.

Turning our attention to the interior of the rectangle we let (x,y) be an

element of the open rectangle (xol) X (Yo,1 )" Then,

' p-q q q p-q

Gl(xy) = px q _P- _(xPxP+l) P [(xPxP+I)P+(yP-yP+I)P- q
1 0 0 0

and

p-q q-p a P-q

G2 (x,y) =pyq-1 (xq+yq_l)q 
_py p -yP+l ) P [(xP-xP+l )P+(YP-yP+I)P-I] q

q l p yp p

Since each of p, x, y, x+ q -1, Yo y + , xp - xp + 1 is positive,

we have, upon setting G1 (x,y) = 0 and G2 (x,y) 
= 0, that

q-p p-q

(32) xP-q (xp. P+l) p [(xP-xP+l)
p + (yP-yP+l)

p - 1] q

0 00

- q-p q p-q

YP-q (YP-y P+l) P [(xP-xP+l)P + (y
P-yp+l)p - 1] q

0 0 0

[ I/p 1 p Y /p

But, since x (xp - xp +1) _ 1 and Y < (yp - y +) < 1,
0 0

[ q((xP-xP+l) (Y°P-yP+) IP

->
". > T (Xo,y o ) > 0.
- - qo

4 . . , . , ,
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Thus

-- + 1)p - ~q(yp - + 1)p

Raising both sides to the power q P P , multiplying both sides of the result

by xP y Pand solving for y we obtain

-7 (33)0

0

Substituting this into G I(x,y) =0 we obtain

q-l '/_qqq

xx x + 'O'~+>i
XP + 1

00

1 - q ~ x~PlPpP + p-q' +) i
[x+Y xip- x Pi P [(XXp - 'l)

(x 1) 0 1)P+ (O (+P1.+)O )

+- q - q

4 + 'j x 0 _x-, p I (x +1) Y0+1 + -

+0 0
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This reduces to

_!.

1 q(xp -x
p + 1) p

0

which we can solve for x to obtain

xP+l11/p

1"2

Substituting this into (33) gives

yP 
+ ) 

I/p

Y = 2

Therefore the only critical point inside the rectangle [x ,1] X [Yo, 1] is0

located at

(xP + 1/P(P 
l/P)21 i  2 '2J

An application of Lemma 7 yields the desired result.

The proof for negative p is so similar we shall omit it.

i.
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